Search results for "Nipah Virus"

showing 3 items of 3 documents

Exploring the Human-Nipah Virus Protein-Protein Interactome

2017

ABSTRACT Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manip…

0301 basic medicineVirologiaParamyxoviridaeNipah virusviruses030106 microbiologyImmunologyComputational biologyBiologyMicrobiologyInteractomeMass SpectrometryVirusProtein–protein interactionViral Proteins03 medical and health sciencesVirologyAnimalsHumansProtein Interaction MapsHenipavirus InfectionsHost (biology)Transmission (medicine)Nipah VirusVirus Internalizationbiology.organism_classificationVirus-Cell Interactions030104 developmental biologyHenipavirus InfectionsInsect ScienceHost-Pathogen InteractionsInteraccions RNA-proteïna
researchProduct

A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus …

2019

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quanti…

0301 basic medicinevirusesmembrane fusionlcsh:QR1-502virusNipah virusBiologyGiant Cells01 natural scienceslcsh:MicrobiologySmall Molecule Libraries03 medical and health sciencesVirus entryViral envelopeViral life cycleViral entryVirologyDrug DiscoveryHumansSyncytiumDrug discoveryBrief ReportbiomolèculesHigh-throughput screeningLipid bilayer fusionVirus InternalizationFusion proteinHigh-Throughput Screening Assays0104 chemical sciencesCell biologyBimolecular complementation010404 medicinal & biomolecular chemistryMulticellular organismHEK293 Cells030104 developmental biologyInfectious DiseasesViruses
researchProduct

Proteomic composition of Nipah virus-like particles

2017

Abstract Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including sol…

Proteomics0301 basic medicinevirusesNipah virusHost–pathogen interactionBiophysicsBiologyProteomicsBiochemistryVirusViral Proteins03 medical and health sciencesViral life cycleViral envelopeTandem Mass SpectrometryViral entryHumans030102 biochemistry & molecular biologyNipah VirusVirionVirology030104 developmental biologyCellular componentHost-Pathogen InteractionsChromatography LiquidProtein BindingJournal of Proteomics
researchProduct